Статьи

Наиболее распространенные алюминиевые сплавы


Наиболее распространенные алюминиевые сплавы


Деформируеммые сплавы
Силумины (сырьевые)
Дюралюминий
Литейные сплавы
Силумины (литейные)

Большинство алюминиевых предметов, на самом деле, изготовлены из алюминиевых сплавов. Механической прочности чистого алюминия, как правило, не хватает для решения даже самых простых бытовых и технических задач.      

Добавление   легирующих элементов в алюминий существенно изменяет его свойства. Одни качества повышаются - прочность, твердость,  жаростойкость. Другие снижаются – электропроводность, коррозионная стойкость. Почти всегда в результате легирования растет плотность.  Исключение составляет легирование марганцем и магнием. 

По способу применения алюминиевые сплавы можно разделить на   деформируемые и литейные.  Деформируемые сплавы обладают  высокой пластичностью в нагретом состоянии. Литейные  - способны эффективно заполнять литейные формы.   

Сырье для получения сплавов обоего типа  - не только технически чистый алюминий,  но и  силумин -  сплав алюминия с кремнием (10-13 %). Силумин в России обычно маркируют как СИЛ-00 (наиболее чистый по примесей), СИЛ-0, СИЛ-1 и СИЛ-2 и поставляют  в виде гладких чушек или чушек с пережимами массой 6 и 14 кг.  

Деформируемые сплавы

Их структура (гомогенный твердый раствор) обеспечивает   наибольшую пластичность и наименьшую прочность при обработке  давлением под нагревом. Основными легирующие элементы -  медь, магний, марганец и цинк. В небольших количествах  -  кремний, железо, никель и т.д. Деформируемые алюминиевые сплавы обычно делят на упрочняемые и неупрочняемые. Прочность первых можно повысить термической обработкой.

Типичными упрочняемыми сплавами являются дюралюминии - сплавы алюминия с медью (2.2 – 7%), содержащие примеси кремния и железа. Они могут быть легированы магнием и марганцем.  

Названия марок дюралюминия состоят из буквы «Д» (она всегда первая) и номера сплава.  Сейчас  наиболее распространено пять основных марок дюралюминия:   

Дюралюминий Основной химический состав, %
Cu  Mn Mg Si,не более Fe,не более
Д1...... 3,8-4,8 0,4-0,8 0,4-0,8 0,7 0,7
Д16..... 3,8-4,9 0,3-0,9 1,2-1,8 0,5 0,5
Д18..... 2,2-3,0 <0,2 0,2-0,5 0,5 0,5
Д19..... 3,8-4,3 0,5-1,0 1,7-2,3 0,5 0,5
Д20..... 6,0-7,0 0,4-0,8 <0,05 0,3 0,3

Термическая обработка дюралюминия состоит из двух этапов. Сначала его нагревают выше  500C. При этой температуре его структура представляет собой гомогенный твердый раствор меди в алюминии. Закалка (охлаждение в воде)  позволяет сохранить такую  структуру в течении нескольких суток  при комнатной температуре. В этот момент  дюралюминий  гораздо более мягок и пластичен, чем после.  

Структура закаленного дюралюминия имеет малую стабильность. При комнатной температуре она изменяется. Атомы избыточной меди группируются в растворе, располагаясь в порядке, близком к характерному для кристаллов химического соединения CuAl, но химическое соединение   не образуется и  не отделяется от твердого раствора. За счет неравномерности распределения атомов в кристаллической решетке твердого раствора возникают искажения решетки. Они приводят к значительному повышению твердости и прочности с одновременным снижением пластичности сплава.

Процесс изменения структуры закаленного дюралюминия при комнатной температуре носит название естественного старения. Оно наиболее интенсивно происходит в течение первых нескольких часов. Полностью   завершается -  через 4-6 суток, придавая сплаву максимальную для него прочность.

При подогреве сплава до 100-150 C   происходит искусственное старение. В этом случае процесс завешается быстрее, но упрочнение меньше. Объясняется это тем, что при более высокой температуре диффузионные перемещения атомов меди осуществляются более легко - происходит завершенное образование фазы CuAl и выделение ее из твердого раствора.

Максимальное упрочнение дюралюминия может быть достигнуто методом естественного старения в течение четырех дней.

Кованый алюминий

Близкими по химическому составу к дюралюминию, но в горячем состоянии  более пластичными,   являются алюминиевые сплавы для поковок и штамповок, маркируемые буквами АК («алюминий кованый») и порядковым номером (АК4, АК4-1, АК6 и АК8).

Высокопрочные сплавы

К группе деформируемых упрочняемых сплавов относят также более высокопрочные, чем дюралюминий, сплавы   Al-Cu-Mg-Zn. Названия марок   начинаются буквой «В» (высокопрочные) - В93, В94, В95. Характерная  особенность  -  сравнительно небольшое содержании меди (0.8-2.4 %) и магния (1.2-2.8 %) по сравнению с цинком  (5-7 %). Цинк не образует упрочняющих фаз, но, входя в состав твердого раствора, увеличивает эффект старения, что приводит к значительному повышению твердости.

 Неупрочняемые сплавы

В эту группу входят сплавы на основе магния и марганца. Они повышают прочность и коррозионную стойкость алюминия (при содержании магния не более 3%). Сплавы с магнием более легкие, чем чистый алюминий.

Увеличение прочности может быть достигнуто с помощью пластической деформации.  Наклепанные (нагартованные) изделия из этих сплавов обладают существенно более высокой прочностью, чем в отожженном состоянии. В сплаве АМц, например, при поклепе временное сопротивление повышается с 13 до 22 кГ/мм .

Название марок таких сплавов  принято  обозначать буквами АМц («алюминий-марганец») и   АМг («алюминий-магний»), далее   следует цифра, указывающая номер сплава.

Общая таблица деформируемых сплавов

Сплавы алюминиевые деформируемые по ГОСТ и ОСТ

Обозначение марок Химический состав в %
Бук-
вен-
ное
Циф-
ро-
вое
ASTM Al Cu Mg Mn Fe Si Zn Ti       Примеси, не более
каж-
дая в отд.
сум-
ма
АДОО 1010 1260 99,70 0,015 0,02 0,02 0,16 0,16 0,07 0,05       0,02 0,30
АДО 1011 1145 99,50 0,02 0,03 0,025 0,30 0,30 0,07 0,1       0,03 0,50
АД1 1013 1230 99,30 0,05 0,05 0,025 0,30 0,30 0,1 0,15       0,05 0,70
АД 1015 1100 98,80 0,1 0,1 0,1 0,50 0,50 0,1 0,15       0,05 1,20
ММ 1511 3005 ос-
но-
ва 
0,2 0,2
-
0,5
1,0
-
1,4
0,6 1,0 0,1 0,1       0,05 0,2
АМц 1400 3003 ос-
но-
ва 
0,1 0,2 1,0
-
1,6
0,7 0,6 0,1 0,2       0,5 0,1
АМцС 1403   ос-
но-
ва 
0,1 0,05 1,0
-
1,4
0,25
-
0,45
0,15
-
0,35
0,1 0,1       0,05 0,1
АМг2 1520 5052 ос-
но-
ва 
0,1 1,8
-
2,6
0,2
-
0,6
0,4 0,4 0,2 0,1 Cr 0,05     0,05 0,1
АМг3 1530 5154 ос-
но-
ва 
0,1 3,2
-
3,8
0,3
-
0,6
0,5 0,5
-
0,8
0,2 0,1 Cr 0.05     0.05 0.1
АМг4 1540 5086 ос-
но-
ва 
0,1 3,8
-
4,5
0,5
-
0,8
0,4 0,4 0,2 0,02
-
0,10
Cr 0.05
-
0.25
Be 0.002
-
0.005
  0.05 0.1
АМг5 1550 5056 ос-
но-
ва 
0,1 4,8
-
5,8
0,3
-
0,8
0,5 0,5 0,2 0,02
-
0,10
  Be 0.005   0.05 0.1
АМг6 1560 5556 ос-
но-
ва 
0,1 5,8
-
6,8
0,5
-
0,8
0,4 0,4 0,2 0,02
-
0,10
  Be 0.002
-
0.005
  0.05 0.1
АД31 1310 6063 ос-
но-
ва 
0,1 0,4
-
0,9
0,1 0,5 0,3
-
0,7
0,2 0,15       0,05 0,1
АД33 1330 6061 ос-
но-
ва 
0,15
-
0,40
0,8
-
1,2
0,15 0,7 0,4
-
0,8
0,25 0,15 Cr 0.15
-
0.35
    0.05 0.15
АД35 1350 6351 ос-
но-
ва 
0,1 0,8
-
1,4
0,5
-
0,9
0,5 0,8
-
1,2
0,2 0,15       0,05 0,1
АВ 1341 6151 ос-
но-
ва 
0,1
-
0,5
0,45
-
0,90
0,15
-
0,35
0,5 0,5
-
1,2
0,2 0,15 Cr
0.25
    0.05 0.1
АВч     ос-
но-
ва 
0,05 0,06
-
1,0
0,05 0,12 0,35
-
0,55
0,05         0,05 0,1
Д1 1110 2017 ос-
но-
ва 
3,8
-
4,8
0,4
-
0,8
0,4
-
0,8
0,7 0,7 0,3 0,1   Ni 0.1 0,6
-
1,0
0.05 0.1
Д1ч     ос-
но-
ва 
3,8
-
4,8
0,4
-
0,8
0,4
-
0,8
0,4 0,5 0,3 0,1 Ni 0.1 Fe
+
Si 0.7
  0.05 0.1
Д16 1160 2024 ос-
но-
ва 
3,8
-
4,9
1,2
-
1,8
0,3
-
0,9
0,5 0,5 0,3 0,1   Ni 0.1   0.05 0.1
Д16ч   2124 ос-
но-
ва 
3,8
-
4,9
1,2
-
1,8
0,3
-
0,9
0,3 0,2 0,1 0,1 Ni 0.05     0.05 0.1
ВАД1     ос-
но-
ва 
3,8
-
4,5
2,3
-
2,7
0,35
-
0,8
0,3 0,2 0,1 0,03
-
0,10
  Zc 0.07
-
0.2
Be 0.002
-
0.005
0.05 0.1
Д19     ос-
но-
ва 
3,8
-4
,3
1,7
-
2,3
0,5
-
1,0
0,5 0,5 0,1 0,1     Be 0.002
-
0.005
0.05 0.1
Д19Ч     ос-
но-
ва 
3,8
-
4,3
1,7
-
2,3
0,4
-
0,9
0,3 0,2 0,1 0,1     Be 0.002
-
0.005
0.05 0.1
  1163   ос-
но-
ва 
3,8
-
4,5
1,2
-
1,6
0,4
-
0,8
0,15 0,1 0,1 0,01
-
0,07
Ni 0.05     0.05 0.1
САВ1     ос-
но-
ва 
0,012 0,45
-
0,9
0,012 0,2 0,7
-
1,3
0,03 0,012 Ni 0.03 Cd 0.001 Be 0.012 0.03 0.07
АК6 1360   ос-
но-
ва 
1,8
-
2,6
0,4
-
0,8
0,4
-
0,8
0,7 0,7
-
1,2
0,3 0,1 Ni 0.1     0.05 0.1
АК8 1380 2014 ос-
но-
ва 
3,9
-
4,8
0,4
-
0,8
0,4
-
1,0
0,7 0,6
-
1,2
0,3 0,1 Ni 0.1     0.05 0.1
АК4 1140   ос-
но-
ва 
1,9
-
2,5
1,4
-
1,8
0,2 0,8
-
1,3
0,5
-
1,2
0,3 0,1 Ni 0.8
-
1.3
    0.05 0.1
АК4-1 1141 2618 ос-
но-
ва 
1,9
-
2,7
1,2
-
1,8
0,2 0,8
-
1,4
0,35 0,3 0,02
-
0,10
Ni 0.8
-
1.4
Cr 0.01   0.05 0.1
АК4-1ч     ос-
но-
ва 
2,0
-
2,6
1,2
-
1,8
0,1 0,9
-
1,4
0,1
-
0,25
0,1 0,05
-
0,1
Ni 0.9
-
1.4
Cr 0.1   0.05 0.1
Д20 1120   ос-
но-
ва 
6,0
-
7,0
0,05 0,4
-
0,8
0,3 0,3 0,1 0,1
-
0,2
  Zc 0.2   0.05 0.1
  1105   ос-
но-
ва 
2,0
-
5,0
0,4
-
2,0
0,3
-
1,0
1,5 3,0 1,0 Ti
+
Cr
+
Zc 0.2
Ni 0.2     0.05 0.2

 

Сплав Химический состав в %
  Al Cu Mg Mn Fe Si Zn Ti Ni Pb Cr Sn Прочие примеси
каждая в отд. сумма
АК5М основа 1,5-3,5 0,2-0,8 0,2-0,8 1,0 4,0-6,0 1,5 0,05-0,20 0,5         2,8
АК12М2МгН основа 1,5-3,0 0,85-1,35 0,3-0,6 0,7 11,0-13,0 0,5 0,05-0,20 0,8-1,3 0,1 0,2 0,02   1,2
ВАЛ10 основа 4,5-5,1 0,05 0,35-0,8 0,10 0,20 0,1 0,15-0,35 Cd 0,07-0,25 Zc 0,02       0,6
Сплав Химический состав в%
  алюминий + магний Примеси не более
Всего не менее В т. ч. не более Cu Zn Si Pb Sn Всего примесей
АВ87 87,0 3,0 3,8 3,3 5,0 0,3 0,2 13,0

Литейные сплавы

Легко плавятся и  текут, эффективно заполняют литейную форму.  Обычно их делят на пять типов в зависимости основного   легирующего элемента – магния, кремния, меди и т.д.  Независимо от их принадлежности к той или иной группе обозначают буквами АЛ («алюминиевый литейный») и номером.

Группа сплава Сплавы Основной химический состав,% Перечень марок входящих в группу
Mg Si Cu Zn Ni
1 АЛ8 9,5-11,5 - - - - АЛ13, АЛ22, АЛ23, АЛ27, АЛ28, АЛ29,
2 АЛ2 - 10-13 - - - АЛ4, АЛ9
3 АЛ7 - - 4-5 - - АЛ19
4 АЛ3 0,35-0,6 4,5-5,5 1,5-3,0 - - АЛ5,АЛ6, АЛ10, АЛ14, АЛ15
5 АЛ1 1,2-1,75 - 3,75-4,5 - 1,75-2,3 АЛ16, АЛ17, АЛ18,
  АЛ11 0,1-0,3 6,0-8,0 - 7-12  - АЛ20, АЛ21, АЛ24,
  АЛ26 0,4-0,7 20-22 1,5-2,5 - 1,0-2,0 АЛ25,

Сплав алюминия с высоким содержанием магния (марка АЛ8) обладает наиболее высокими механическими и антикоррозионными свойствами среди литейных сплавов. Его литейные свойства существенно хуже.

Силумины литейные

Литейные сплавы с высоким содержанием кремния часто называют